

6th International Seminar on ORC Power Systems ECONOMIC MODEL PREDICTIVE CONTROL ON A WASTE HEAT RECOVERY ORC 2021 **MICRO-ORC**

Efstratios Varvagiannis^{* 1}, Ioannis Kalogeropoulos², Tryfon C. Roumpedakis¹, Platon Pallis¹, Sotirios Karellas¹ and Haralambos Sarimveis²

⁺School of Mechanical Engineering, National Technical University of Athens *svarv@mail.ntua.gr

²School of Chemical Engineering, National Technical University of Athens

Introduction

- μORC especially prototype \bullet designed for waste heat recovery from marine ICE's jacket cooling circuit using R134a¹
- Dynamic modeling of the ORC in Dymola using the open source Thermocycle library²

- Minimization of a cost function J(x) over a prediction horizon of N=21 samples leads to the control law u(t + 1)
- In each time step t: new prediction according to the measured variables y(t), disturbances kept constant at d(t)

Control variables (scaled):

- Expander speed: u_1
- Pump speed: u_2

Disturbances (scaled):

- Evaporator hot water flow rate : d_1
- Sea water temperature: d_2

Measured variables (scaled):

- Evap. pressure: y_1 lacksquare
- Evap. Out temperature: y_2
- Cond. pressure : y_3
- Subcooler Out temperature: y_4
- Expander elec. Power: y_5

- Linearized step response models derived from the detailed dynamic model of the setup
- Benchmarking of an Economic MPC control strategy based on well-known DMC 🔄 the methodology versus conventional PID control

Dynamic Modelling

Exchangers: Open Drive Scroll Expanders: Brazed Plate Heat Finite Calibrated empirical model using Thermocycle 1D Standard Pajecka's equation fitted on acquired Volume model: experimental data for the isentropic

- 21 Control Volumes
- efficiency (e_{is}) and the filling factor Geometrical characteristics based \bullet $(ff)^{3}$ on real HEX data
- Heat Transfer Coef. -> correlations $e_{is} = e_{is} (p_{in}, r_p, N_{exp})$ • $ff = ff(p_{in}, r_p, N_{exp})$ fitted on experimental data **Diaphragm Pump:**

Liquid Receiver:

Formulation of the optimization problem (Economic MPC):

"Goal is to maximize the net produced energy over the control horizon N, with the minimum control effort and subject to a set of constraints"

Let:

$$\min(J) \quad i = 1 \dots N$$

$$J = W_e \cdot J_E + W_c \cdot J_C + W_u \cdot J_u, \qquad 0 \le W_e, W_c, W_u \le 1$$

 $J_E = -\sum_{i=1}^{N} \hat{P}_{net}, \ J_C = \sum_{i=1}^{N} \sum_{k=1}^{5} (w_i \cdot \|e_{k,i}\|), \ J_u = r_1 \cdot \|u_1\| + r_2 \cdot \|u_2\|$

Subject to:

• The model predictions must follow the DMC formulation:

 $\hat{y}_{j} = A_{j1} \cdot u_{1} + A_{j2} \cdot u_{2} + F_{j1} \cdot x_{1} + F_{j2} \cdot x_{2} + D_{j1} \cdot d_{1} + D_{j2} \cdot d_{2}$ **Operational constraints on:**

 $\widehat{T}_{SH,i} = f(\widehat{y}_{1,i}, \widehat{y}_{2,i}) + e_{1,i} \ge 5 K$ Superhating: $\widehat{T}_{SC,i} = f(\widehat{y}_{4,i}, \widehat{y}_{5,i}) + e_{2,i} \ge 5 K$ Subcooling: **Evaporation pressure:** $\widehat{p}_{evap,i} = f(y_{2,i}) \le 26.5 \ bar + e_{3,i}$ **Condensing pressure:** 6.5 $bar + e_{4,i} \leq \hat{p}_{cond,i} = f(y_{4,i}) \leq 9 bar + e_{5,i}$ $-3 \le u_{1,i} \le 1$ **Control Variables'** $-4 \le u_{2,i} \le 2$ Limitations $du_{1,i} = u_{1,i} - u_{1,i-1} < 0.5$

- Model based on manufacturer data for
- Volume flow rate vs speed
- consumption Power hydraulic energy

Standard Thermocycle lumped versus parameter model

Pin = 23 ba

Conventional PID control

Two separate PID control loops:

- Controller 1: Maintain superheating at a constant value using the ORC pump speed as a control variable (T_{SH}^{SP} = 5 K)
- **Controller 2:** Maintain the evaporation pressure on a constant value using the expander speed as a control variable ($P_{evap}^{SP} = 25 \ bar$)

 $L du_{2,i} = u_{2,i} - u_{2,i-1} < 0.5$

PID (Alternate A) Economic DMC

- DMC algorithm implemented in Matlab, using the Gurobi optimizer and the YAL-MIP toolbox.
- **Computational cost / time step:** ~0,5sec on a quad core desktop processor

Simulation Results

Simulation for DMC where ran on Dymola by feeding the controller outputs from MATLAB back to the model, while for PID ran exclusively in Dymola.

Scenario A: Benchmarking of PID Alternate A vs Economic DMC for 20 min operation

DMC pushes the expander to max speed:

- Higher pump consumption and expander production
- Enhanced net energy output by ~4.5% compared to PID Scenario B: Benchmarking of PID Alternate B vs Economic DMC for 20 min operation

t (s)

- Gains calculated using the IMC Method based on Dymola simulations **Two control alternates:**
- Alternate A: Both Controller #1 and Controller #2 acting on the system
- **Alternate B:** Only Controller #1 acting on the system expander fixed to max speed for enhanced efficiency

Model Predictive Control methodology

Method based on the classic Dynamic Matrix Control approach:

• System output prediction (\hat{y}) using step response models derived from Dymola simulations for inputs/disturbances with sampling time $\Delta t_s = 5$ sec

Similar in terms of power consumption but DMC manages to avoid condenser overpressure constraint violation by combined expander/pump control

Conclusions

- Successful evaluation of a linear Economic Model Predictive Controller on a µORC leading to enhanced power production and constraint satisfaction compared to conventional control techniques at low computational cost.
- DMC methodology is mature, easy to implement (using just experimental data for the formulation of the step response models) and commercially available.

References: [1] P. Pallis et al. "Development, experimental testing and techno-economic assessment of a fully automated marine organic rankine cycle prototype for jacket cooling water heat recovery," Energy, vol. 228, [2] S. Quoilycle: A Modelica library for the simulation of thermodynamic systems," in Proceedings of the 10th International Modelica Conference, 2014, [3] S. Declaye et al., "Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid," Energy, vol 55.